Если у вас есть числовые признаки, то как работает разбиение узла при бэггинге?
Основу этой ансамблевой модели (которую также можно назвать Случайный лес) составляют деревья решений. В них разбиение работает по следующему алгоритму: ▪️Сначала определяется, какой из признаков лучше всего использовать для разбиения на данном этапе построения дерева. Решение обычно основывается на критерии прироста информации. ▪️Для выбранного числового признака алгоритм ищет оптимальное значение, которое будет использоваться в качестве порога для разбиения. Например, если признак — это возраст, алгоритм может определить, что разбиение на группы меньше 30 лет и >30 лет максимизирует критерий выбора.
В бэггинге каждое дерево строится независимо от других, используя случайное подмножество признаков. Разбиения в деревьях осуществляются таким же образом, как описано выше, но поскольку каждое дерево обучается на разных данных, они могут делать разные разбиения даже для одних и тех же признаков.
Если у вас есть числовые признаки, то как работает разбиение узла при бэггинге?
Основу этой ансамблевой модели (которую также можно назвать Случайный лес) составляют деревья решений. В них разбиение работает по следующему алгоритму: ▪️Сначала определяется, какой из признаков лучше всего использовать для разбиения на данном этапе построения дерева. Решение обычно основывается на критерии прироста информации. ▪️Для выбранного числового признака алгоритм ищет оптимальное значение, которое будет использоваться в качестве порога для разбиения. Например, если признак — это возраст, алгоритм может определить, что разбиение на группы меньше 30 лет и >30 лет максимизирует критерий выбора.
В бэггинге каждое дерево строится независимо от других, используя случайное подмножество признаков. Разбиения в деревьях осуществляются таким же образом, как описано выше, но поскольку каждое дерево обучается на разных данных, они могут делать разные разбиения даже для одних и тех же признаков.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.
China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.
Библиотека собеса по Data Science | вопросы с собеседований from es